Hybrid Intelligent Pattern Recognition Systems for Mass Segmentation and Classification: A Pilot Study on Full-Field Digital Mammograms

نویسندگان

چکیده

Governments and health authorities emphasize the importance of early detection breast cancer, usually through mammography, to improve prognosis, increase therapeutic options achieve optimum outcomes. Despite technological advances advent full-field digital mammography (FFDM), diagnosis abnormalities on mammographic images remains a challenge due qualitative variations in different tissue types densities. Highly accurate computer-aided (CADx) systems could assist differentiation between normal abnormal classification as benign or malignant. In this paper, classical, advanced fuzzy sets fusion techniques for image enhancement were combined with three thresholding methods (Global, Otsu type-2 threshold) classifying (K-means, FCM ANFIS) masses FFDM. The aim paper is identify performance sets, segmentation, decisions based K-means FCM, ANFIS classifier. Sixty-three combinations evaluated ninety-seven (sixty-five thirty-two malignant). sixty-three was by estimating accuracy, F1 score, area under curve (AUC). LH-XWW method classifier outperformed all other an accuracy 95.17%, score 89.42% AUC 0.91. This algorithm seems offer promising CADx system cancer

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcalcification Detection in Full Field Digital Mammograms

In this paper we present a complete system to detect breast cancer. Main objective is to support radiologists with automatic, semantic based, search methods directly over medical images. The complete step of microcalcification detection in mammography images is presented. We use a three stage algorithm that allows the detection and classification of microcalcification with satisfactory results.

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

A Novel Breast Image Preprocessing For Full Field Digital Mammographic Segmentation and Risk Classification

To obtain optimal breast image quality during the image acquisition, a compression paddle is used to even the breast thickness. Clinical observation has indicated that breast peripheral areas may not be fully compressed, and may cause unexpected intensity and texture variation within these areas. Such breast parenchymal appearance discrepancies may not be desirable for tissue modelling within c...

متن کامل

Adapting Breast Density Classification from Digitized to Full-Field Digital Mammograms

Mammographic density is strongly associated with breast cancer, being considered one of the most important risk indicators for the development of this type of disease. Likewise, the sensitivity of automatic breast lesion detection systems is significantly dependent on breast tissue characteristics. Therefore, the measurement of density is definitely useful for detecting breast cancer. The aim o...

متن کامل

A dual-stage method for lesion segmentation on digital mammograms.

Mass lesion segmentation on mammograms is a challenging task since mass lesions are usually embedded and hidden in varying densities of parenchymal tissue structures. In this article, we present a method for automatic delineation of lesion boundaries on digital mammograms. This method utilizes a geometric active contour model that minimizes an energy function based on the homogeneities inside a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app131810401